

Succinate Assay Kit

Product Information

Common Name

succinate

Cat.No. Kit-2478

Product Overview

SUCCINATE, or succinic acid, can be found in all plants and animal tissues. It is an intermediate in the citric acid cycle and plays an important role in intracellular energy generation. Succinate is widely used as a flavoring agent in the food, beverage, and pharmaceutical industries due to its low toxicity. The succinate assay provides a simple, one step assay for measuring succinate. In this assay succinate is converted to pyruvate which reacts with specific reagents and dye to form a colored product. The color intensity at 570 nm or fluorescence at $\text{Ex/Em} = 530/585$ nm of the reaction product is directly proportional to succinate concentration in the sample.

Applications

Direct Assays: succinate in food, beverage, agricultural products, and other biological samples.

Notes

Reagents are for research use only. Briefly centrifuge tubes before opening. Equilibrate all components to room temperature prior assay. Normal precautions for laboratory reagents should be exercised while using the reagents.

Stability

Shelf life: 6 months after receipt.

Storage

The kit is shipped on ice. Store all components at -20°C upon receiving.

Size

100 tests

Kit Components

Tel: 1-631-559-9269 1-516-512-3133

Fax: 1-631-938-8127

Email: info@creative-biomart.com

45-1 Ramsey Road, Shirley, NY 11967, USA

Succinate Assay Kit

Assay Buffer: 10 mL

Enzyme Mix: 120 μ L

Cosubstrate: 120 μ L

PEP: Dried

Dye Reagent: 120 μ L

Standard: 500 μ L 20 mM Succinate

Materials Required but Not Supplied

Pipetting devices, centrifuge tubes, clear flat-bottom 96-well plates, and plate or cuvette reader.

Preparation

Reagent Preparation: Reconstitute PEP by adding 120 μ L water to tube. Make sure PEP is fully dissolved by pipetting up and down. Store reconstituted PEP at -20°C and use within 1 month.

Sample Preparation: clear and slightly colored samples can be assayed directly. It is prudent to test several dilutions to determine an optimal dilution factor n.

Solid samples (food, fruits etc) can be homogenized in water followed by filtration or centrifugation (e.g. 5 min 14,000 rpm).

Samples Tested: Soy Sauce and Red Wine. Each diluted 1:30 to 1:50 in dH₂O for colorimetric analysis, or 1:300 to 1:500 for fluorimetric analysis.

All samples can be stored at -80 to -20°C for at least one month.

Assay Protocol

Colorimetric Procedure

1. Internal standard is required for colorimetric assay. Each sample requires two separate reactions: 1) Sample plus internal standard and 2) Sample alone. In addition, each assay plate requires a water blank well. Add 20 μ L of each sample to two separate wells. Also, add 20 μ L dH₂O to a separate well. For the internal standard, prepare 400 μ L 1 mM succinate standard by mixing 20 μ L 20 mM standard with 380 μ L dH₂O. Add 5 μ L 1 mM standard to the sample plus internal standard wells. Add 5 μ L dH₂O to the sample alone and water wells.

2. Prepare sufficient Working Reagent (WR) for wells by mixing, for each well, 85 μ L Assay Buffer, 1 μ L Enzyme Mix, 1 μ L Cosubstrate, 1 μ L PEP and 1 μ L dye reagent. Fresh reconstitution of the WR is

Succinate Assay Kit

recommended. Add 80 μ L WR to each well. Tap plate to mix. Incubate for 30 min at room temperature.

3. Read optical density at 570nm (550-585nm).

Fluorimetric Procedure

1. Prepare a 40 μ M Standard Premix by mixing 20 μ L of 1 mM succinate (see colorimetric internal standard procedure) with 480 μ L dH₂O. Dilute Standard in distilled water as follows.

No Premix + H₂O Vol (μ L) Succinate (μ M)

1 100 μ L + 0 μ L 100 40

2 60 μ L + 40 μ L 100 24

3 30 μ L + 70 μ L 100 12

4 0 μ L + 100 μ L 100 0

Transfer 20 μ L standards and 20 μ L samples into separate wells of a black 96-well plate.

2. Add 80 μ L Working Reagent (see Colorimetric Procedure). Tap plate to mix.

3. Incubate 30 min at room temperature and read fluorescence at λ ex/em = 530/585 nm.

Analysis

Colorimetric Method: the succinate concentration is computed as follows:

$[\text{Succinate}] = (\text{RSAMPLE} - \text{RH2O}) / (\text{RSTANDARD} - \text{RSAMPLE}) \times 250 \times n \text{ } (\mu\text{M})$

where RSAMPLE, RH₂O, and RSTANDARD are optical density of the Sample, Water, and the Sample plus Standard, respectively. n is the sample dilution factor. Note: The volume of the internal standard is 4 \times lower than the sample volume; thus, the sample to standard ratio is multiplied by 250 μ M and not 1000 μ M.

Fluorimetric Method: Determine the Slope from the standard fluorescence values and calculate the succinate concentration as follows:

$[\text{Succinate}] = (\text{RSAMPLE} - \text{RH2O}) / \text{Slope } (\mu\text{M}^{-1}) \times n \text{ } (\mu\text{M})$

Notes: If the calculated succinate concentration is >400 μ M for the colorimetric assay, or >40 μ M for the fluorimetric assay, dilute sample in dH₂O and repeat assay. Multiply result by the dilution factor n.

Conversions: 1 mM succinate equals 11.7 mg/dL, or 117 ppm.
