Creative BioMart to Present at
                        BIO-Europe Spring Creative BioMart to Present at AACR Annual Meeting|Apr. 5-10, 2024|Booth #2953

AmpC

  • Overview

    False positive lipoprotein prediction. The ampC -lactamase gene encodes a serine cephalosporinase .
  • Synonyms

    beta-lactamase/D-alanine carboxypeptidase;ampA;ECK4146;JW4111;ampC;beta-lactamase;penicillin resistance;
Species Cat.# Product name Source (Host) Tag Protein Length Price
E.coli ampC-967E Active Recombinant E. coli AmpC protein, His-tagged E.coli His 20-377aa
Escherichia coli ampC-4176E Recombinant Escherichia coli ampC protein, His-SUMO-tagged E.coli His-SUMO 20-377aa
P. aeruginosa ampC-1119P Recombinant P. aeruginosa ampC Protein, His-SUMO-tagged E.coli His/SUMO
  • Involved Pathway
  • Protein Function
  • Interacting Protein
  • AmpC Related Articles

AmpC involved in several pathways and played different roles in them. We selected most pathways AmpC participated on our site, such as Two-component system, beta-Lactam resistance, which may be useful for your reference. Also, other proteins which involved in the same pathway with AmpC were listed below. Creative BioMart supplied nearly all the proteins listed, you can search them on our site.

Pathway Name Pathway Related Protein
Two-component system
beta-Lactam resistance

AmpC has several biochemical functions, for example, . Some of the functions are cooperated with other proteins, some of the functions could acted by AmpC itself. We selected most functions AmpC had, and list some proteins which have the same functions with AmpC. You can find most of the proteins on our site.

Function Related Protein

AmpC has direct interactions with proteins and molecules. Those interactions were detected by several methods such as yeast two hybrid, co-IP, pull-down and so on. We selected proteins and molecules interacted with AmpC here. Most of them are supplied by our site. Hope this information will be useful for your research of AmpC.

Wang, WB; Liu, LQ; et al. Detection of beta-Lactamase Residues in Milk by Sandwich ELISA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 10:2688-2698(2013).
Ohe, M; Yokose, T; et al. Stromal micropapillary component as a novel unfavorable prognostic factor of lung adenocarcinoma. DIAGNOSTIC PATHOLOGY 7:-(2012).
  • Q&As
  • Reviews

Q&As (26)

Ask a question
Are there any intrinsic AmpC-producing bacterial species? 03/05/2023

Yes, there are certain species of bacteria that naturally produce AmpC beta-lactamases. Some examples include Enterobacter cloacae, Serratia marcescens, and Citrobacter freundii. These bacteria can carry AmpC genes in their chromosomal DNA, which allows them to express AmpC enzymes constitutively.

Is the spread of AmpC-mediated resistance a global concern? 01/10/2023

Yes, the spread of AmpC-mediated resistance is a global concern. It has been reported in various countries and is increasingly recognized as a significant threat to public health worldwide. The global nature of travel and international trade contributes to the dissemination of resistant bacteria, including those carrying AmpC genes. International collaboration and surveillance efforts are crucial to address this global problem effectively.

Can AmpC-mediated resistance be transmitted from animals to humans? 12/26/2022

Yes, there is evidence of AmpC-mediated resistance being transmitted from animals to humans, particularly through the food chain. Bacteria carrying AmpC genes can be present in animals, such as poultry or livestock, and can be transferred to humans through contaminated food or direct contact.

Can horizontal gene transfer contribute to the spread of AmpC genes? 12/03/2022

Yes, horizontal gene transfer, which involves the transfer of genetic material between different bacterial strains or species, can contribute to the spread of AmpC genes. This can occur through plasmids, integrons, or transposons, facilitating the dissemination of antibiotic resistance.

Can overuse or inappropriate use of antibiotics contribute to the development of AmpC-mediated resistance? 10/08/2022

Yes, overuse or inappropriate use of antibiotics can contribute to the development of AmpC-mediated resistance. The selective pressure exerted by antibiotics can promote the emergence and spread of bacteria with AmpC beta-lactamases, leading to the development of resistance.

Is there a link between AmpC-mediated resistance and other resistance mechanisms? 05/20/2022

Yes, AmpC-mediated resistance can often be associated with other resistance mechanisms, such as extended-spectrum beta-lactamase (ESBL) production or carbapenemases. Bacteria that produce AmpC beta-lactamases may also produce other enzymes that confer resistance to additional classes of antibiotics, further complicating treatment options.

What are the risk factors for acquiring AmpC-mediated resistance? 11/03/2021

There are several risk factors associated with acquiring AmpC-mediated resistance. These include previous exposure to antibiotics, particularly cephalosporins and beta-lactamase inhibitors; a history of hospitalization or healthcare-associated infections; prolonged hospital stays; invasive procedures; immunosuppression; and contact with AmpC-producing bacteria through contaminated environments or healthcare workers.

How can healthcare professionals help prevent the spread of AmpC-mediated resistance? 09/09/2021

Healthcare professionals play a crucial role in preventing the spread of AmpC-mediated resistance. Measures that can help include appropriate antibiotic prescribing practices, adherence to infection prevention and control guidelines, strict compliance with hand hygiene protocols, proper disinfection and cleaning of equipment and environments, and active surveillance for multidrug-resistant bacteria.

How do AmpC beta-lactamases differ from other types of beta-lactamases? 08/09/2021

AmpC beta-lactamases differ from other types of beta-lactamases in several ways. Unlike some other beta-lactamases, AmpC enzymes are not usually inducible. They are constitutively expressed at a basal level in certain bacterial species or can be upregulated in response to beta-lactam antibiotics. AmpC enzymes are not effectively inhibited by commonly used beta-lactamase inhibitors, unlike extended-spectrum beta-lactamases (ESBLs). Moreover, AmpC enzymes can hydrolyze a broad range of beta-lactam antibiotics, including third-generation cephalosporins and cephamycins.

Can AmpC-mediated resistance be transferred between different bacterial species? 09/30/2020

Yes, the AmpC genes can be transferred between different bacterial species through horizontal gene transfer. This process allows the transfer of genetic material, including AmpC genes, from one bacterium to another, even across different species. This transfer can occur through plasmids, which are small, circular pieces of DNA that can replicate independently within bacteria.

How prevalent is AmpC-mediated resistance in clinical settings? 07/10/2020

AmpC-mediated resistance has become an increasingly prevalent concern in clinical settings. It has been reported in various healthcare-associated infections, including urinary tract infections, bloodstream infections, and pneumonia. The prevalence can vary geographically and among different healthcare facilities.

Can AmpC-mediated resistance lead to treatment failures or poor outcomes? 12/29/2019

Yes, AmpC-mediated resistance can lead to treatment failures and poor clinical outcomes. Due to the ability of AmpC enzymes to hydrolyze a wide range of beta-lactam antibiotics, infections caused by AmpC-producing bacteria may be more challenging to treat. Limited treatment options may require the use of broader-spectrum antibiotics or combination therapies, which can increase the risk of side effects, antibiotic toxicity, and the emergence of further resistance.

Is research being conducted to develop new antibiotics targeting AmpC? 06/16/2019

Yes, research efforts are focused on developing novel antibiotics or modifying existing ones to specifically target AmpC beta-lactamases. These efforts aim to overcome AmpC-mediated resistance and improve treatment options for bacterial infections.

Are there diagnostic tests available for AmpC-mediated resistance in clinical laboratories? 03/26/2019

Yes, there are commercially available diagnostic tests that can detect AmpC-mediated resistance in clinical laboratories. These tests employ different methodologies, including enzyme-based assays or molecular techniques, to identify the presence of AmpC beta-lactamases in bacterial isolates.

How does the AmpC protein confer antibiotic resistance? 02/19/2019

The AmpC enzyme works by breaking down the beta-lactam ring structure of antibiotics, rendering them ineffective. This degradation occurs through hydrolysis, resulting in the inactivation of the antibiotics and making the bacteria resistant to their effects.

Can AmpC-mediated resistance be overcome by developing new antibiotics? 02/09/2019

Developing new antibiotics is one approach to tackle AmpC-mediated resistance. However, it is a complex challenge as bacteria can develop resistance to new antibiotics over time. Therefore, a combination of strategies, including the development of new antibiotics and alternative treatments, is crucial to combat AmpC-mediated resistance effectively.

What infection types are commonly associated with AmpC-producing bacteria? 11/11/2018

AmpC-producing bacteria can cause various types of infections, including urinary tract infections, bloodstream infections, intra-abdominal infections, pneumonia, and surgical site infections. The healthcare setting, particularly intensive care units and surgical wards, is more prone to AmpC-related infections due to higher antibiotic use, invasive procedures, and prolonged hospital stays.

What are the clinical implications of AmpC-mediated antibiotic resistance? 05/01/2018

Strains of bacteria expressing AmpC beta-lactamases pose a significant challenge in healthcare settings, as they are often resistant to a broad range of antibiotics, limiting treatment options. This can lead to more severe infections, increased healthcare costs, and higher mortality rates.

How can detection and monitoring of AmpC be performed in the lab? 04/18/2018

Various laboratory techniques can be employed to detect and monitor the presence of AmpC beta-lactamases in bacteria. These include phenotypic tests, such as the AmpC disk test or the AmpC E-test, as well as genotypic methods, such as polymerase chain reaction (PCR) or sequencing to identify specific AmpC genes.

In which bacteria is the AmpC protein commonly found? 04/12/2018

The AmpC protein is primarily found in Gram-negative bacteria, including species like Escherichia coli and Klebsiella pneumoniae. It is a natural component of their resistance mechanisms.

Are there mechanisms through which the activity of AmpC can be regulated? 12/20/2017

Yes, the activity of AmpC can be modulated by different mechanisms. One notable mechanism involves the presence of regulatory proteins, such as AmpR, that control the expression of AmpC. Additionally, the activity of AmpC can be affected by mutations or changes in the regulatory regions of the gene.

Can AmpC-mediated resistance be detected through routine antibiotic susceptibility testing? 04/04/2017

AmpC-mediated resistance can sometimes go undetected through routine antibiotic susceptibility testing methods. This is because some AmpC enzymes are not effectively inhibited by commonly used beta-lactamase inhibitors, and their presence may not be evident. Specialized tests, such as AmpC disk tests or phenotypic confirmatory methods, are often needed to accurately detect and confirm AmpC-mediated resistance.

Can the AmpC protein be produced by bacteria in response to antibiotic exposure? 02/21/2017

Yes, certain bacteria possess a regulatory system that can induce the production of AmpC in response to the presence of certain antibiotics, particularly beta-lactams. This adaptive response allows bacteria to develop resistance to these antibiotics.

Are there strategies to overcome AmpC-mediated resistance? 11/06/2016

Yes, several strategies have been proposed to overcome AmpC-mediated resistance. These include the use of combination therapy with inhibitors of AmpC enzymes, such as beta-lactamase inhibitors or the use of alternative antibiotics that are not susceptible to AmpC degradation.

Are there any treatment options available for infections caused by AmpC-producing bacteria? 10/27/2016

Treatment options for infections caused by AmpC-producing bacteria can be challenging. In some cases, using antibiotics that are not susceptible to AmpC enzymes, such as carbapenems, may be effective. Combination therapy with a beta-lactamase inhibitor, such as clavulanate or tazobactam, along with another antibiotic, can also be considered.

Are there any preventive measures to reduce the prevalence of AmpC-mediated resistance? 06/06/2016

Preventive measures to reduce the prevalence of AmpC-mediated resistance include promoting appropriate antibiotic use, implementing infection control practices in healthcare settings, and enhancing surveillance to detect and contain the spread of resistant bacteria. Additionally, responsible use of antibiotics in veterinary medicine and agriculture can also help reduce the prevalence in animals and prevent transmission to humans.

Customer Reviews (4)

Write a review
Reviews
09/22/2022

    when employed in Western Blotting experiments, the ampC protein consistently generates sharp and well-defined protein bands, enabling precise visualization and analysis of protein expression.

    10/14/2021

      I highly recommend the use of the ampC protein in various experimental applications.

      09/09/2020

        Considering its outstanding performance across multiple assays, I confidently endorse the inclusion of the ampC protein in diverse research studies.

        02/23/2017

          the ampC protein has been successfully utilized in protein electron microscopy structure analysis, providing valuable insights into molecular structures and interactions.

          Ask a Question for All AmpC Products

          Required fields are marked with *

          My Review for All AmpC Products

          Required fields are marked with *

          logo

          FOLLOW US

          Terms and Conditions        Privacy Policy

          Copyright © 2024 Creative BioMart. All Rights Reserved.

          Contact Us

          • /

          Stay Updated on the Latest Bioscience Trends