Address: 45-1 Ramsey Road, Shirley, NY 11967, USA    USA: 1-631-559-9269  1-631-448-7888   Fax: 1-631-938-8127  Europe: 44-207-048-3343   Email:


Bookmark and Share
Official Full Name
caspase 8, apoptosis-related cysteine peptidase
This gene encodes a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes composed of a prodomain, a large protease subunit, and a small protease subunit. Activation of caspases requires proteolytic processing at conserved internal aspartic residues to generate a heterodimeric enzyme consisting of the large and small subunits. This protein is involved in the programmed cell death induced by Fas and various apoptotic stimuli. The N-terminal FADD-like death effector domain of this protein suggests that it may interact with Fas-interacting protein FADD. This protein was detected in the insoluble fraction of the affected brain region from Huntington disease patients but not in those from normal controls, which implicated the role in neurodegenerative diseases. Many alternatively spliced transcript variants encoding different isoforms have been described, although not all variants have had their full-length sequences determined. [provided by RefSeq, Jul 2008]
CASP8; caspase 8, apoptosis-related cysteine peptidase; CAP4; MACH; MCH5; FLICE; ALPS2B; Casp-8; caspase-8; FADD-like ICE; MACH-alpha-1/2/3 protein; apoptotic protease Mch-5; MACH-beta-1/2/3/4 protein; apoptotic cysteine protease; ICE-like apoptotic protease 5; MORT1-associated ced-3 homolog; FADD-homologous ICE/CED-3-like protease; caspase 8, apoptosis-related cysteine protease
  • Recombinant Proteins
  • Lysates
  • Cat. #
  • Product name
  • Source(Host)
  • Species
  • Tag
  • Price

CASP8 Related Articles
>> Shaw, BE; Lee, F; et al. Caspase-8 polymorphisms result in reduced Alemtuzumab-induced T-cell apoptosis and worse survival after transplantation. BONE MARROW TRANSPLANTATION 50:237-243(2015).
>> Hu, Y; Liu, HX; et al. Transcriptome profiling and genome-wide DNA binding define the differential role of fenretinide and all-trans RA in regulating the death and survival of human hepatocellular carcinoma Huh7 cells. BIOCHEMICAL PHARMACOLOGY 85:1007-1017(2013).

45-1 Ramsey Road, Shirley, NY 11967, USA
USA: 1-631-559-9269  1-631-448-7888
Europe: 44-207-048-3343
FAX: 1-631-938-8127

facebook twitter linkedin google plus google plus

Join 10 other subscribers

Easy access to products and services you need from our library via powerful searching tools
Copyright © 2007 - 2016 Creative Biomart. All Rights Reserved.