Heavy-labeled Full-length Proteins

    Recombinant Human TRIM31 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 TRIM31-3771H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human DUT Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 DUT-3772H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human SH2B3 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 SH2B3-3773H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human SEPTIN14 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 SEPTIN14-3774H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human SPHKAP Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 SPHKAP-3775H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human CRIP1 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 CRIP1-3776H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human METAP1 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 METAP1-3777H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human ITIH3 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 ITIH3-3778H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human SHCBP1L Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 SHCBP1L-3779H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human TNFSF18 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 TNFSF18-3780H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human PRDX5 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 PRDX5-3781H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human FXYD7 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 FXYD7-3782H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human BPIFB1 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 BPIFB1-3783H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human NFKBIA Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 NFKBIA-3784H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    Recombinant Human GNA11 Protein, Myc/DDK-tagged, C13 and N15-labeled

    🧪 GNA11-3785H

    Source:  HEK293

    Species:  Human

    Tag:  DDK&Myc

    Conjugation: 

    Protein Length: 

    0
    cart-icon
    0
    compare icon

    Background

    What is isotopic labeling?

    Isotopic labeling is a technique used in chemistry and biology where one or more of the atoms in a molecule is replaced with an isotope of that atom - usually a radioactive or a stable isotope. This is often done to help trace the path of atoms through a chemical reaction or metabolic pathway, or to measure the movement or distribution of a substance within a system. It can also be used to gain information about the structure or function of a molecule.

    What is isotopic labeling

    Due to the costly manners of producing isotopic chemicals and heterologous proteins, an economic 15N/13C isotopic labeling strategy is critically in demand. Stable isotope labeling by amino acids in cell culture (SILAC) is a multiplexing quantitative proteomic method that incorporates isotopically (heavy) labeled amino acids metabolically into the whole proteome.

    Creative BioMart now offers an extensive collection of Mass Spectrometry (MS) standards for 6,000 proteins. Produced in HEK293T cells and labeled with [U- 13C6, 15N4]-L-Arginine and [U- 13C6, 15N2]-L-Lysine, these full-length proteins with appropriate post-translational modifications are ideal identification and quantification standards.

    Advantages

    • Precision: Isotopic labeling allows for a very specific and precise identification and quantification of proteins.
    • Stability: Isotopes are chemically identical to their non-radioactive counterparts and thus do not interfere with the normal function or behavior of the protein.
    • Sensitivity: Isotopic labeling is highly sensitive and can detect even small changes in protein expression or function.
    • Non-destructive
    • Multiple Labeling: With isotopic labeling, multiple isotopes can be incorporated into the same protein, allowing for a detailed study of not only the protein's location but also its interactions with other proteins or molecules.
    • Authentic post-translational modifications
    • High data consistency
    • High reproducibility
    • Identifying the best SRM and MRM transitions
    • Suitable for most types of MS equipment
    • Over 90% incorporation efficiency

    Applications

    Structural Determination: NMR (nuclear magnetic resonance) spectroscopy and other techniques use isotopic labeling to determine the three-dimensional structure of proteins. Specifically labeled isotopes provide greater resolution and clarity in the data.

    Reaction Tracing: Isotopic labeling can track how a protein reacts or metabolizes within a system. For example, a labeled atom could be used to trace the metabolic pathway of a protein in a biological system.

    Quantification: Isotopic labeling can aid in the quantification of proteins in a complex mixture using mass spectrometry.

    Enzyme/Substrate Studies: In enzyme-substrate studies, isotopic labeling helps in identifying the mechanisms and pathways.

    Protein-Protein Interaction: Isotopic labeling is also used to study protein-protein interactions, protein folding, and dynamics.

    Biomolecular research: Isotopic labeling is fundamental for biomolecular research, including drug discovery and development.

    Protein Turnover Studies: It can be used to measure the synthesis and breakdown rates of proteins.

    It also allows for kinetic studies by helping to understand reaction rates and mechanisms.

    Related Resource