Creative BioMart to Present at
                        BIO-Europe Spring Creative BioMart to Present at AACR Annual Meeting|Apr. 5-10, 2024|Booth #2953

Recombinant Chicken AKAP17A

Cat.No. : AKAP17A-4140C
Product Overview : Recombinant Chicken AKAP17A full length or partial length protein was expressed.
  • Specification
  • Gene Information
  • Related Products
Source : Mammalian Cells
Species : Chicken
Tag : His
Form : Liquid or lyophilized powder
Endotoxin : < 1.0 eu per μg of the protein as determined by the LAL method.
Purity : >80%
Notes : This item requires custom production and lead time is between 5-9 weeks. We can custom produce according to your specifications.
Storage : Store it at +4 oC for short term. For long term storage, store it at -20 oC~-80 oC.
Storage Buffer : PBS buffer
Gene Name : AKAP17A A kinase (PRKA) anchor protein 17A [ Gallus gallus (chicken) ]
Official Symbol : AKAP17A
Gene ID : 418664
Protein Refseq : NP_001182479
UniProt ID : F1NFG4

For Research Use Only. Not intended for any clinical use. No products from Creative BioMart may be resold, modified for resale or used to manufacture commercial products without prior written approval from Creative BioMart.

Inquiry

  • Q&As
  • Reviews

Q&As (23)

Ask a question
Is AKAP17A involved in neuronal signaling? 04/06/2023

Yes, AKAP17A has been reported to play a role in neuronal signaling. It is known to localize in the nucleus and interact with transcription factors and other nuclear proteins involved in neuronal gene expression. AKAP17A may also participate in PKA-mediated signaling pathways that are crucial for neuronal development, synaptic plasticity, and neurotransmitter release. However, the specific mechanisms and functions of AKAP17A in neuronal signaling require further investigation.

Are there any animal models available to study AKAP17A? 11/10/2022

Animal models specific to studying AKAP17A have not been reported in the literature. However, AKAP17A may be studied in the context of various animal models, depending on the specific research question or disease condition being investigated.

Does AKAP17A have any other isoforms or related proteins? 06/06/2022

In the current literature, there is no mention of other isoforms or closely related proteins of AKAP17A. However, ongoing research may uncover additional isoforms or related proteins in the future.

Can AKAP17A be targeted for therapeutic purposes? 11/30/2021

The potential therapeutic targeting of AKAP17A has not been extensively investigated. However, given its role in modulating PKA signaling, it is reasonable to speculate that manipulating AKAP17A interactions could have downstream effects on cellular processes regulated by PKA. Further research is required to explore this potential avenue.

Are there any known interacting partners of AKAP17A? 10/14/2021

As of now, specific interacting partners of AKAP17A have not been extensively characterized. However, being an AKAP, it is anticipated that AKAP17A may interact with PKA regulatory subunits, as well as other proteins involved in intracellular signaling pathways.

Does AKAP17A have any known functions or roles in cellular processes? 10/12/2021

AKAP17A is primarily known for its role as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) to specific subcellular compartments. By tethering PKA to specific locations, AKAP17A helps regulate PKA-mediated signaling pathways and cellular processes such as gene expression, metabolism, and cell proliferation.

Is AKAP17A expressed in specific tissues or organs? 12/02/2020

Information regarding tissue-specific expression patterns of AKAP17A is limited. It is reported to be expressed in multiple tissues, including the brain, heart, and testis. However, more studies are needed to determine the exact tissue distribution and expression levels of AKAP17A.

Is AKAP17A conserved across different species? 08/05/2020

AKAP17A shows a degree of conservation across different species. Homologs of AKAP17A have been identified in various organisms, suggesting its evolutionary significance. However, the extent of conservation and functional similarities/differences may vary among species.

Are there any known natural mutations or genetic variations in the AKAP17A gene? 06/12/2020

At present, no known natural mutations or genetic variations in the AKAP17A gene have been documented in the scientific literature. Future studies may uncover such variations and investigate their associations with diseases or functional consequences.

Can AKAP17A interact with non-PKA signaling molecules? 02/18/2020

While AKAP17A is primarily known for its role in PKA signaling, it is possible that it can interact with non-PKA signaling molecules, given its scaffold function. However, specific interactions with non-PKA molecules have not been well-characterized in the literature.

Has AKAP17A been implicated in cancer progression? 01/29/2020

Although AKAP17A's direct involvement in cancer progression has not been extensively studied, dysregulation of PKA signaling pathways, which AKAP17A is involved in, has been linked to various types of cancer. Perturbations in PKA-mediated signaling, which could be influenced by AKAP17A, can impact cell proliferation, survival, invasion, and other processes relevant to cancer progression. Further research is necessary to determine the specific role of AKAP17A in cancer biology.

Has AKAP17A been implicated in any human diseases or conditions? 12/25/2019

While the specific involvement of AKAP17A in human diseases or conditions is not well-documented, dysregulation of PKA signaling pathways, which AKAP17A is involved in, has been implicated in various diseases including cancer, heart disease, and neurological disorders. AKAP17A might indirectly contribute to these conditions by impacting PKA signaling.

Is AKAP17A associated with any diseases? 02/16/2019

The potential involvement of AKAP17A in diseases is not well-documented in the current scientific literature. Further research is needed to determine if any disease-related processes or conditions are associated with AKAP17A.

Are there any known binding partners or interacting proteins of AKAP17A? 07/16/2018

The specific binding partners or interacting proteins of AKAP17A are not well-defined. However, as a scaffold protein, AKAP17A may interact with multiple proteins involved in PKA signaling or other cellular processes. Further research is needed to identify and characterize the interacting proteins of AKAP17A.

Can AKAP17A be post-translationally modified? 01/13/2018

Post-translational modifications, such as phosphorylation, ubiquitination, and acetylation, can play important roles in protein regulation. Although limited information is available on post-translational modifications of AKAP17A, it is possible that AKAP17A could be subjected to such modifications. Further research is needed to elucidate this aspect.

Are there any drugs or compounds known to target AKAP17A? 12/07/2017

Currently, there are no known drugs or compounds specifically targeting AKAP17A. However, modulating PKA signaling pathway components, including AKAPs, has been explored as a therapeutic strategy in certain diseases. Further research may identify potential drugs or interventions that indirectly affect AKAP17A function.

Are there any known phosphorylation sites on AKAP17A? 01/15/2017

there is limited information available on the phosphorylation sites of AKAP17A. Further research is needed to identify if and how AKAP17A is phosphorylated, and if phosphorylation plays a role in its function or regulation.

Can AKAP17A interact with other AKAPs and form protein complexes? 10/19/2016

There is currently no well-established evidence for direct interactions between AKAP17A and other AKAPs. However, AKAPs in general have been shown to form dynamic multi-protein complexes, and AKAP17A may participate in similar interactions. These protein complexes often facilitate the spatial and temporal organization of signaling pathways. Further studies are needed to explore the potential interactions of AKAP17A with other AKAPs and the functional consequences of such interactions.

Are there any known functional domains within AKAP17A? 06/30/2016

AKAP17A is predicted to contain multiple functional domains, including an AKAP domain and a leucine zipper domain. The AKAP domain is responsible for binding PKA and anchoring it to specific locations in the cell. The leucine zipper domain is involved in protein-protein interactions and can facilitate the formation of higher-order protein complexes. These domains contribute to the scaffolding function of AKAP17A and its ability to regulate PKA-mediated signaling.

Can AKAP17A interact with other AKAPs? 03/25/2016

AKAPs have the ability to interact with each other, forming complex protein networks involved in cellular signaling. While specific interactions with other AKAPs have not been reported for AKAP17A, the possibility of such interactions cannot be ruled out. Future research may uncover potential interplay between AKAP17A and other AKAPs.

Can AKAP17A be regulated by post-translational modifications? 02/14/2016

There is limited information regarding post-translational modifications of AKAP17A. However, like other proteins, AKAP17A may undergo various modifications, including phosphorylation, acetylation, or ubiquitination, which could influence its function and localization. Further investigations are required to elucidate the specific post-translational modifications that AKAP17A may undergo and their impact on its activity.

Can AKAP17A regulate gene expression? 06/01/2015

AKAP17A is known to localize to the nucleus and interact with transcription factors and other nuclear proteins. It can potentially influence gene expression by modulating the activity or accessibility of these proteins. However, the specific mechanisms and genes regulated by AKAP17A are not well-understood and require further investigation.

Can AKAP17A be regulated by other signaling pathways? 03/09/2015

AKAP17A may be subject to regulation by other signaling pathways, as it acts as a link between PKA and other intracellular signaling molecules. However, the specific regulatory mechanisms and signaling pathways that modulate AKAP17A function are largely unknown and require further investigation.

Customer Reviews (4)

Write a review
Reviews
10/15/2020

    Its outstanding characteristics align seamlessly with my experimental objectives, positioning it as the ideal choice for my scientific investigations.

    07/17/2020

      This protein demonstrates remarkable purity and functionality, ensuring precise and reliable results in my research.

      04/22/2018

        The AKAP17A protein's exceptional quality, complemented by the manufacturer's outstanding technical assistance, instills confidence in the success of my experiments.

        01/19/2016

          The AKAP17A protein is an exceptional product that surpasses all expectations in terms of quality, making it perfectly suited to meet my experimental requirements.

          Ask a Question for All AKAP17A Products

          Required fields are marked with *

          My Review for All AKAP17A Products

          Required fields are marked with *

          0

          Inquiry Basket

          cartIcon
          logo

          FOLLOW US

          Terms and Conditions        Privacy Policy

          Copyright © 2024 Creative BioMart. All Rights Reserved.

          Contact Us

          • /

          Stay Updated on the Latest Bioscience Trends