Creative BioMart to Present at
                        BIO-Europe Spring Creative BioMart to Present at AACR Annual Meeting|Apr. 5-10, 2024|Booth #2953

Recombinant Human AMT protein, GST-tagged

Cat.No. : AMT-531H
Product Overview : Human AMT full-length ORF ( AAH07546, 1 a.a. - 289 a.a.) recombinant protein with GST-tag at N-terminal.
  • Specification
  • Gene Information
  • Related Products
Description : This gene encodes one of four critical components of the glycine cleavage system. Mutations in this gene have been associated with glycine encephalopathy. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]
Source : Wheat Germ
Species : Human
Tag : GST
Molecular Mass : 57.53 kDa
AA Sequence : MESLVVGDIAELRPNQGTLSLFTNE AGGILDDLIVTNTSEGHLYVVSNAG CWEKDLALMQDKVRELQNQGRDVGL EVLDNALLALQGPTAAQVLQAGVAD DLRKLPFMTSAVMEVFGVSGCRVTR CGYTGEDGVEISVPVAGAVHLATAI LKNPEVKLAGLAARDSLRLEAGLCL YGNDIDEHTTPVEGSLSWTLGKRRR AAMDFPGAKVIVPQLKGRVQRRRVG LMCEGAPMRAHSPILNMEGTKIGTV TSGCPSPSLKKNVAMGYVPCEYSRP GTMLLVELPSGPCF
Applications : Enzyme-linked Immunoabsorbent Assay; Western Blot (Recombinant protein); Antibody Production; Protein Array
Notes : Best use within three months from the date of receipt of this protein.
Storage : Store at -80 centigrade. Aliquot to avoid repeated freezing and thawing.
Storage Buffer : 50 mM Tris-HCI, 10 mM reduced Glutathione, pH=8.0 in the elution buffer.
Gene Name : AMT aminomethyltransferase [ Homo sapiens ]
Official Symbol : AMT
Synonyms : AMT; aminomethyltransferase; aminomethyltransferase (glycine cleavage system protein T); aminomethyltransferase, mitochondrial; GCST; glycine cleavage system protein T; NKH; glycine cleavage system T protein; GCE; GCVT;
Gene ID : 275
mRNA Refseq : NM_000481
Protein Refseq : NP_000472
MIM : 238310
UniProt ID : P48728

For Research Use Only. Not intended for any clinical use. No products from Creative BioMart may be resold, modified for resale or used to manufacture commercial products without prior written approval from Creative BioMart.

Inquiry

  • Q&As
  • Reviews

Q&As (20)

Ask a question
Is the AMT protein conserved across species? 08/14/2022

Yes, the AMT protein is conserved across various species. Homologs of the AMT protein have been identified in organisms ranging from bacteria to mammals, indicating its evolutionary importance in ammonia transport and metabolism. The conservation of the AMT protein suggests its essential role in maintaining ammonia homeostasis across different organisms.

How is the AMT protein related to urea cycle disorders? 03/01/2022

The AMT protein is not directly related to urea cycle disorders. Urea cycle disorders involve deficiencies in enzymes responsible for converting ammonia to urea, whereas the AMT protein is primarily involved in ammonia transport. However, disturbances in ammonia metabolism can occur in both urea cycle disorders and AMT-related disorders, contributing to hyperammonemia. In some cases, individuals with urea cycle disorders may experience compensatory changes in AMT expression or activity to enhance ammonia elimination.

Can changes in the AMT protein affect muscle function? 12/16/2021

There is limited information on the specific impact of changes in the AMT protein on muscle function. However, since the AMT protein plays a role in ammonia detoxification, which can affect overall metabolic processes in the body, it is possible that alterations in the AMT protein could indirectly impact muscle function. This could occur through disturbances in energy metabolism or alterations in nitrogen balance, which are essential for muscle health and performance.

How is the AMT protein regulated in cells? 08/22/2021

The regulation of the AMT protein involves various mechanisms to maintain ammonia homeostasis. Some regulatory factors include hormonal signals, such as insulin and glucagon, as well as dietary factors like protein intake. These signals can affect the expression and activity of the AMT protein, ensuring appropriate transport and elimination of ammonia.

Can changes in ammonia levels in the body impact the expression of the AMT gene? 07/15/2021

Yes, changes in ammonia levels can impact the expression of the AMT gene. High ammonia concentrations can upregulate the expression of the AMT gene to enhance ammonia elimination. Conversely, low ammonia levels can result in the downregulation of the AMT gene, reducing ammonia transport activity to prevent excessive ammonia removal.

Does the expression of the AMT protein change under different physiological conditions? 09/02/2020

The expression of the AMT protein can be regulated in response to different physiological conditions. For example, in the presence of high ammonia levels, the expression of the AMT protein may increase to enhance ammonia removal from the body. Additionally, hormonal and metabolic factors can also influence the expression of the AMT protein in specific tissues and organs.

Are there any known genetic variations or mutations in the AMT gene? 06/06/2020

Yes, there are known genetic variations or mutations in the AMT gene that can result in functional changes in the AMT protein. Some mutations can lead to hyperammonemia, a condition characterized by elevated levels of ammonia in the blood. These mutations can impair the ability of the AMT protein to transport ammonia properly, causing ammonia accumulation and associated health issues.

Are there any diseases or disorders associated with mutations in the AMT gene? 04/14/2020

Yes, mutations in the AMT gene can lead to various disorders related to ammonia metabolism. These include congenital hyperammonemia, which is a group of genetic disorders characterized by the inability to properly process and eliminate ammonia. This can result in severe neurological symptoms and metabolic abnormalities.

Can alterations in the AMT protein contribute to cancer development? 09/28/2019

The AMT protein has been implicated in certain types of cancers. Altered ammonia metabolism has been observed in cancer cells, and dysregulation of the AMT protein may play a role in this process. Further research is needed to fully understand the relationship between the AMT protein and cancer development.

What research is currently being conducted on the AMT protein? 11/01/2018

Current research on the AMT protein focuses on understanding its structure, function, and regulation in different tissues and organs. Scientists are also investigating potential therapeutic strategies for disorders associated with ammonia metabolism, including targeting the AMT protein to enhance ammonia elimination or reduce toxic effects in affected individuals.

Are there any known mutations in the AMT gene that lead to disorders or diseases? 10/13/2018

Yes, mutations in the AMT gene have been identified and linked to various disorders. These mutations often result in impaired ammonia transport and metabolism, leading to conditions such as congenital hyperammonemia, proximal renal tubular acidosis, and other metabolic disorders. These mutations can affect the structure, function, or expression of the AMT protein, disrupting its normal physiological role.

Can changes in the AMT protein contribute to neurodegenerative diseases? 05/05/2018

There is limited research suggesting a potential link between changes in the AMT protein and neurodegenerative diseases. Ammonia accumulation and dysregulation of ammonia metabolism have been observed in conditions like Alzheimer's disease and Parkinson's disease. While the precise role of the AMT protein in these diseases is not fully understood, it is possible that alterations in ammonia transport and metabolism mediated by the AMT protein could contribute to neurodegenerative processes.

Does the AMT protein have any other physiological functions apart from ammonia transport? 09/29/2017

While the primary function of the AMT protein is ammonia transport, there is emerging evidence suggesting its involvement in other cellular processes. Studies indicate potential roles for the AMT protein in pH regulation, cellular osmoregulation, and nitrogen metabolism beyond its ammonia transport function.

Are there any drugs or treatments available for disorders related to the AMT protein? 09/02/2017

Treatment options for disorders related to the AMT protein, such as congenital hyperammonemia, often involve ammonia detoxification methods. This may include dietary interventions, such as reducing protein intake, along with the administration of ammonia-scavenging drugs like sodium phenylacetate and sodium benzoate. In severe cases, liver transplantation may be necessary to restore proper ammonia metabolism.

Can alterations in the AMT protein lead to developmental disorders? 05/23/2017

Yes, alterations in the AMT protein can contribute to developmental disorders. Congenital hyperammonemia, caused by mutations in the AMT gene, is a developmental disorder that presents in newborns and can lead to neurological damage and intellectual disabilities if left untreated. Disruptions in ammonia metabolism during prenatal and early postnatal development can have severe consequences for brain development, highlighting the importance of the AMT protein in normal development.

What other proteins interact with the AMT protein? 03/20/2017

The AMT protein interacts with other proteins in the cell membrane to form functional complexes. Some of these interacting proteins include Rh glycoproteins and Rhesus factor-associated glycoproteins. These interactions play a crucial role in the regulation of ammonia transport and maintaining ammonia homeostasis.

Are there any therapies or interventions under development that target the AMT protein? 01/25/2017

As our understanding of the AMT protein increases, researchers are exploring potential therapies and interventions that target this protein to manage disorders related to ammonia metabolism. Strategies may involve gene therapy to correct genetic mutations, pharmacological approaches to modify protein function, or novel treatment methods that enhance ammonia detoxification.

Can changes in the AMT protein contribute to kidney-related diseases? 01/04/2017

Yes, changes in the AMT protein can contribute to kidney-related diseases. The AMT protein is involved in ammonia excretion by the kidneys, and dysregulation of ammonia metabolism can lead to kidney damage and dysfunction. For example, mutations in the AMT gene can cause proximal renal tubular acidosis, a condition characterized by impaired bicarbonate reabsorption and an accumulation of acid in the blood.

Can changes in the AMT gene or protein lead to neurological disorders? 10/09/2016

Yes, changes in the AMT gene or protein can potentially lead to neurological disorders due to the toxic effects of elevated ammonia levels on the brain. Conditions such as congenital hyperammonemia, which is often associated with mutations in the AMT gene, can cause severe neurological symptoms. These may include seizures, cognitive impairments, developmental delays, and coma if left untreated.

Is the AMT protein expressed in all cells of the body? 06/02/2016

The expression of the AMT protein is not universal to all cells in the body. It is primarily found in tissues involved in ammonia metabolism, such as the liver and kidney. The AMT protein is abundantly expressed in hepatocytes (liver cells) to facilitate ammonia detoxification, and it is also present in renal tubular epithelial cells for ammonia excretion by the kidneys. However, lower levels of the AMT protein expression have been reported in other tissues, suggesting potential roles in additional physiological processes.

Customer Reviews (5)

Write a review
Reviews
01/28/2023

    I highly recommend the AMT protein for a wide range of research applications.

    05/09/2019

      Its ability to preserve structural integrity and facilitate high-resolution imaging has greatly enhanced my understanding of protein complexes and their interactions.

      03/02/2019

        Furthermore, the AMT protein has demonstrated great utility in protein electron microscopy structure analysis.

        11/10/2017

          The AMT protein's reliability and ease of use have made it an essential component of my structural investigations.

          03/10/2017

            The AMT protein's robustness and stability have contributed significantly to the success of my experiments, enabling precise and reproducible measurements.

            Ask a Question for All AMT Products

            Required fields are marked with *

            My Review for All AMT Products

            Required fields are marked with *

            0

            Inquiry Basket

            cartIcon
            logo

            FOLLOW US

            Terms and Conditions        Privacy Policy

            Copyright © 2024 Creative BioMart. All Rights Reserved.

            Contact Us

            • /

            Stay Updated on the Latest Bioscience Trends